Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
*E-mail: liuzhanzhu@imm.ac.cn
Received May 11, 2009
DOI 10.1002/jhet. 248
Published online 21 December 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract

Using L-tyrosine as a chiral starting material, we developed an efficient synthetic route to (-)-MY 336a. A key step in the sequence is a highly regio- and diastereoselective intermolecular Pictet-Spengler cyclization reaction between amino alcohol and benzyloxyacetaldehyde.

J. Heterocyclic Chem., 47, 50 (2010).

INTRODUCTION

MY 336a was isolated in 1986 from the culture broth of Streptomyces gabonae KY2234 (ATCC 15282) and was characterized as a β-adrenergic receptor antagonist with high affinities toward β_{1} - and β_{2}-adrenergic receptors [1] (Fig. 1). Although the relative stereochemistry of MY 336a was determined by an X-ray study of its tetra-acetyl derivative, there has been no report on the elucidation of its absolute stereochemistry so far [2]. Kaufman reported the total synthesis of the racemic MY 336a and its epimer, which used Jackson's isoquinoline synthesis as the key reaction [3]. To date, there has been no report on the total synthesis of its optically pure isomer except an attempt to an enantioselective synthesis of MY336a [4].

In the course of our study of the total synthesis of (-)Renieramycin G and (-)-Lemonomycin, we take (-)-MY 336a as a key precursor for the construction of the $A B$ ring system of (-)-Renieramycin G and (-)-Lemonomycin. Our group had previously reported the construction of the AB ring system of ecteinascidin-saframycin alkaloids by the Pictect-Spengler cyclization between the L-DOPA derivatives and benzyloxyacetaldehyde in which the 1,3-cis-diastereoisomer was the main product [5]. Herein, we report an efficient total synthesis of (-)-MY 336a on the basis of this methodology.

RESULTS AND DISCUSSION

Various methods to synthesize the highly functionalized L-tyrosine derivatives have been reported [6], and we followed an existing procedure under modified con-
ditions to prepare compound 7 (Scheme 1) [7]. Compound 4 was conveniently prepared from l-tyrosine in four steps [7a]: Reduction of compound $\mathbf{4}$ by catalytic hydrogenation to give compound 5; Formylation of 5 with $\mathrm{MeOCHCl}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature in the presence of TiCl_{4} to afford aldehyde 6; Baeyer-Villiger oxidation of 6 using MCPBA in chloroform at room temperature and the subsequent hydrolysis of the resulting formate to give phenol 7. Next, compound 7 was reduced to the corresponding alcohol 8 by LiBH_{4} in 91% yield. The N-acetyl group was removed with 6 N aq HCl in $\mathrm{CH}_{3} \mathrm{OH}$ to give the amino alcohol 9 in 87% yield. The highly regio- and diastereoselective PictetSpengler cyclization reaction between amino alcohol 9 and benzyloxyacetaldehyde at $0^{\circ} \mathrm{C}$ provided the 1,3 -cistetrahydroisoquinoline $\mathbf{1 0}$ in 64% yield and $\mathbf{1 1}$ in 20% yield, respectively [8]. Initially, we removed the N-acetyl group of compoud 7 to get a phenylalanine methyl ester. However, the Pictet-Spengler cyclization reaction between phenylalanine methyl ester and benzyloxyacetaldehyde to construct the tetrahydrosioquinoline fragment met with low yield and poor diastereoselectivity and was ultimately abandoned $[5,8 \mathrm{a}]$. Finally, the O benzyl group of tetrahydroisoquinoline $\mathbf{1 0}$ was removed by catalytic hydrogenation to give the expected product (-)-MY 336a in 86% yield.

The stereochemistry of compound $\mathbf{1}$ was verified on the basis of its NOE spectroscopy. Obvious NOE enhancement was observed between $1-\mathrm{H}$ and $3-\mathrm{H}$; thus a cis-1,3-diaxial relationship was confirmed. The orthorelationship between $5-\mathrm{H}$ and $6-\mathrm{Me}$ was confirmed by the observed NOE enhancement between them.

(-) Renieramycin G(2)

(-)Lemonomycin (3)

Figure 1. Structures of (-)-MY 336a and related tetrahydroisoquinoline alkaloids.

In summary, we have developed a new efficient route to synthesize (-)-MY 336a using l-tyrosine as a chiral starting material, which can be used to elucidate the absolute stereochemistry of natural MY 336a. Further study on the synthesis of Renieramycin G and Lemonomycin based on the methodology is ongoing in our laboratory.

EXPERIMENTAL

General. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 600 MHz or 300 MHz spectrometer at $24^{\circ} \mathrm{C}$ in the indicated solvent and are reported in ppm relative to tetramethylsilane and referenced internally to the residually protonated solvent. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 150 or 75 MHz spectrometer at $24^{\circ} \mathrm{C}$ in the solvent indicated and are reported in ppm relative to tetramethylsilane and referenced internally to the residually protonated solvent. HRMS were carried out by Agilent LC/MSD TOF. Optical rotations were measured on a PerkinElmer Polarimeter 341 LC using 10 cm cells and the sodium D line (589 nm) at $20^{\circ} \mathrm{C}$ and concentration indicated. All reagents were obtained from commercial suppliers unless otherwise stated.
(S)-Methyl-2-acetamido-3-(4-methoxy-3-methylphenyl)propanoate (5). To a solution of compound $4(48 \mathrm{~g}, 0.17 \mathrm{~mol})$ in $\mathrm{MeOH}(750 \mathrm{~mL})$ at room temperature was added $1 N$ aq. HCl $(40 \mathrm{~mL})$ and 10% Pd-C (moist, 30 g), and the mixture was hydrogenated in a Parr apparatus ($50 \mathrm{psi} \mathrm{H}_{2}$) for 4 h . The reaction mixture was filtered through celite, washed with MeOH , and concentrated under vacuum. The residue was dissolved in EtOAc (500 mL) and was then washed with saturated aq. NaHCO_{3}. The phases were separated, and the aqueous phase was extracted with EtOAc ($200 \mathrm{~mL} 2 \times$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right)$ to afford compound $5(38 \mathrm{~g}, 83 \%)$ as a clear oil. $[\alpha]_{\mathrm{D}}{ }^{20}:+103.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$266.1392, found 266.1390. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.89(\mathrm{~m}, 2 \mathrm{H}$), $6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (m, 1 H$), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.08$ (m, 2 H$), 2.17$ (s, $3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2$, $169.5,156.8,131.4,127.3,127.1,126.6,109.8,55.1,53.2,52.1$, 36.8, 23.0, 16.1 .
(S)-Methyl-2-acetamido-3-(3-formyl-4-methoxy-5-methylphenyl)propanoate(6). Titanium chloride ($58 \mathrm{~mL}, 0.42 \mathrm{~mol}, 3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added dropwise over 1 h to a solution of compound 5 ($37 \mathrm{~g}, 0.14 \mathrm{~mol}$) and α, α-dichloro-
methyl methyl ether ($16 \mathrm{~mL}, 0.18 \mathrm{~mol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{ml})$ with stirring under $0^{\circ} \mathrm{C}$. The cooling bath was removed, and the mixture was stirred for a further 3 h , and then poured into ice-water (400 mL). The phases were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 $\mathrm{mL} 2 \times$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporation. The residue was purified by column chromatography ($25 \% n$ hexane in EtOAc) to provide compound $6(37.7 \mathrm{~g}, 92 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}:+102.5$ (c 1.0, CHCl_{3}). HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$294.1341, found 294.1339. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~m}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.06$ (dd, $J=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (s, 3 H), 1.99 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 190.0, 171.8, 169.4, $160.8,138.3,132.5,132.1,128.9,126.6,63.1,53.0,52.4,37.0$, 23.0, 15.5 .
(S)-methyl-2-acetamido-3-(3-hydroxy-4-me-thoxy-5-methylphenyl)propanoate (7). To an ice cold solution of compound $6(15.0 \mathrm{~g}, 51.2 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(300 \mathrm{~mL})$ was added MCPBA ($26.5 \mathrm{~g}, 153.6 \mathrm{mmol}$). The mixture was stirred vigorously at room temperature for 6 h and then washed sequentially with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aqueous NaHCO_{3}, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated, and the residue was dissolved in $\mathrm{MeOH}(150 \mathrm{~mL}$). Then concentrated HCl $\left(12 \mathrm{~N}, 1.28 \mathrm{~mL}, 15.3 \mathrm{mmol}, 0.3\right.$ equiv) was added at $0^{\circ} \mathrm{C}$. The solution was then stirred for 10 h at room temperature and then concentrated by rotary evaporation. The residue was purified by column chromatography ($2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3}) to provide compound 7 ($13.2 \mathrm{~g}, 91 \%$) as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{20}:+91.5$ (c 0.5 , $\left.\mathrm{CHCl}_{3}\right)$. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 282.1345$, found 282.1341. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (dd, $J=12.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (s, 3 H), 3.75 (s, 3 H), 2.97 (m, $2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $172.1,170.0,148.9,144.5,131.9,130.9,122.9,114.2,60.3$, 53.1, 52.2, 37.1, 22.9, 15.7.
(S)-5-(2-Amino-3-hydroxypropyl)-2-meth-oxy-3-methylphenol (9). To a solution of compound $7(5.0 \mathrm{~g}, 13.9 \mathrm{mmol})$ in THF (25 mL) was added $\mathrm{LiBH}_{4}(0.39 \mathrm{~g}, 18.1 \mathrm{mmol}, 1.3$ equiv) in portions at $0^{\circ} \mathrm{C}$. Then, the mixture was stirred for 18 h at room temperature and quenched slowly with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ and extracted with EtOAc (80 mL $3 \times)$. The organic layer was washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporation. The residue was purified by column chromatography (EtOAc) to provide $\mathbf{8}(4.2 \mathrm{~g}, 91 \%)$ as a white solid.

Scheme 1. Reagents and conditions: (a) $\mathrm{H}_{2}(50 \mathrm{psi}), 10 \% \mathrm{Pd}-\mathrm{C}, 1 \mathrm{~N}$ aq. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{OH}, 4 \mathrm{~h}, 83 \%$; (b) $\mathrm{MeOCHCl}_{2}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $4 \mathrm{~h}, 92 \%$; (c) MCPBA, CHCl_{3}, r.t., 6 h ; (d) $12 \mathrm{~N} \mathrm{HCl}, \mathrm{CH}_{3} \mathrm{OH}, 10 \mathrm{~h}, 91 \%$ for two steps; (e) LiBH_{4}, THF , r.t., $24 \mathrm{~h}, 91 \%$; (f) 6 N aq. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{OH}$, reflux, 10 h , 87%; (g) $\mathrm{BnOCH}_{2} \mathrm{CHO}, 4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}=7: 1,0^{\circ} \mathrm{C}, 8 \mathrm{~h}$, compound $\mathbf{1 0}$ in 64% yield, compound $\mathbf{1 1}$ in 20% yield; (h) $\mathrm{H}_{2}(50 \mathrm{psi}), \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{CH}_{3} \mathrm{OH}, 12 \mathrm{~h}, 86 \%$.

To a solution of $\mathbf{8}(3.4 \mathrm{~g}, 10.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(60 \mathrm{~mL})$ was added 6 N aq. $\mathrm{HCl}(11 \mathrm{~mL})$, and then, the mixture was refluxed in an oil bath $\left(80^{\circ} \mathrm{C}\right)$ for 6 h . The reaction solution was removed by rotary evaporation, and the residue was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$. The solution was basified with NEt_{3} and purified directly by column chromatography $\left(\mathrm{SiO}_{2}\right.$ treated with $\mathrm{NEt}_{3}, 5 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3}; then $10 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3}) to provide 9 ($2.6 \mathrm{~g}, 87 \%$) as a white solid. $[\alpha]_{\mathrm{D}}^{20}:-7.4$ (c 0.5 , $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$212.1281, found 212.1313. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COD}$): $\delta 6.78$ (d, J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85$ (dd, $J=11.7 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $J=11.7 \mathrm{~Hz}, 6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75MHz, $\left.\mathrm{CD}_{3} \mathrm{COD}\right): \delta 151.4,146.5,133.1,133.0,123.4$, 116.0, 61.9, 60.4, 55.8, 36.3, 15.9.
(1R,3S)-1-(Benzyloxymethyl)-3-(hydroxyl-methyl)-7-methoxy-6-methyl-1,2,3,4-tetra-hydroisoquinolin-8-ol (10) and (1R,3S)1-(benzyloxymethyl)-3-(hydroxyl-methyl)-7-methoxy-8-methyl-1,2, 3,4-tetra-hydroisoquinolin-6-ol (11). To a solution of 9 (0.60 g , 2.84 mmol), acetic acid ($0.43 \mathrm{~g}, 0.42 \mathrm{~mL}, 7.5 \mathrm{mmol}, 2.5$ equiv) and the $4 \AA$ molecular sieves $(0.5 \mathrm{~g})$ in dichloromethane and 2,2,2-trifluoroethanol ($7: 1, \mathrm{v} / \mathrm{v}, 12 \mathrm{~mL}$), a solution of benzyloxyacetaldehyde ($0.47 \mathrm{~g}, 3.1 \mathrm{mmol}, 1.1$ equiv) in dichloromethane was added slowly via syringe over 1 h at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 8 h , the reaction mixture was diluted with dichloromethane and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography ($2 \% \mathrm{MeOH}$ in chloroform) to afford $\mathbf{1 0}(0.63 \mathrm{~g}$, $64 \%)$ and $11(0.19 \mathrm{~g}, 20 \%)$ as white solid. Compound 10 : $[\alpha]_{\mathrm{D}}^{20}$: -115.2 (c $0.5, \mathrm{CH}_{3} \mathrm{OH}$). HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 344.1856, found 344.1885. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): δ
$8.65(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.31 (brd, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (dd, $J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta 146.7,143.8,138.7,132.6,128.1$, 128.0, 127.3, 127.2, 120.9, 73.8, 72.0, 65.2, 59.9, 53.9, 53.0, 33.0, 15.3. Compound 11: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): δ $8.94(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (dd, $J=9.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=9.9$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=8.4,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{dd}$, $J=15.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=15.9,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03(s, 3 H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6): δ 148.1, 143.9 , 138.6, 130.4, 128.2, 127.8, 127.5, 127.3, 125.8, 124.4, 114.2, 71.9, 68.8, 65.7, 59.3, 53.0, 47.5, 31.3, 11.2.
(-)-MY 336a (1). To a solution of compound $10(230 \mathrm{mg}$, $0.67 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ at room temperature was added $\mathrm{Pd}(\mathrm{OH})_{2}$ (moist, Pd content $20 \%, 50 \mathrm{mg}$), and the mixture was hydrogenated in a Parr apparatus ($50 \mathrm{psi} \mathrm{H}_{2}$) for 10 h . The reaction mixture was filtered through celite, washed with MeOH , and concentrated under vacuum. The pale yellow residue was purified by column chromatograph $\left(\mathrm{SiO}_{2}\right.$ treated with triethylamine, $5 \% \mathrm{MeOH}$ in CHCl_{3}) to afford compound $\mathbf{1}(147 \mathrm{mg}$, 86%) as a yellow solid. $[\alpha]_{\mathrm{D}}^{20}$: -97.3 (c $0.5, \mathrm{CH}_{3} \mathrm{OH}$). HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$254.1387, found $254.1421{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta 8.65$ (s, 1 H), 6.34 ($\mathrm{s}, 1 \mathrm{H}$), 4.66 (s, 1 H), 4.10 (t, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (dd, $J=10.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{OH}$), $3.59(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{OMe}), 3.43(\mathrm{dd}, J=10.8,4.8$
$\left.\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{OH}\right), 3.36\left(\mathrm{dd}, J=10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{OH}\right)$, $3.32\left(\mathrm{dd}, J=10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{OH}\right), 2.68(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 2.41 (dd, $\left.J=15.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{eq}}\right), 2.24(\mathrm{dd}, J=14.4,11.4$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{ax}}$), 2.11(s, $\left.3 \mathrm{H}, 6-\mathrm{Me}\right) .{ }^{13} \mathrm{C}$ NMR (75MHz, DMSO$\left.d_{6}\right): \delta 146.8,143.9,132.4,127.8,121.9,120.9,65.3,64.8,59.7$, 54.9, 53.9, 33.0, 15.3.

Acknowledgments. The Authors thank the National Natural Science Foundation of China (No. 30672518) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060023025) for financial support.

REFERENCES AND NOTES

[1] Kase, H.; Fujita, H.; Nakamura, J.; Hashizumi, K.; Goto, J.; Kubo, K.; Shito, K. J Antibiot 1986, 39, 354.
[2] Hirayama, N.; Iida, T.; Shirahata, K. Acta Crystaallogr Sect C 1990, 46, 86.
[3] (a) Kaufman, T. S. J Chem Soc Perkin Trans 1 1993, 4, 403; (b) Kaufman, T. S. J Chem Soc Perkin Trans 1 1996, 20, 2497.
[4] Kaufman, T. S. Tetrahedron Lett 1996, 37, 5329.
[5] (a) Wang, Y.; Liu, Z. Z.; Chen, S. Z.; Liang, X. T. Chin Chem Lett 2004, 15, 505; (b) Tang, Y. F.; Liu, Z. Z.; Chen, S. Z. Tetrahedron Lett 2003, 44, 7091; (c) Liu, Z. Z.; Wang, Y.; Tang, Y. F.; Chen, S. Z.; Chen, X. G.; Li, H. Y. Bioorg Med Chem Lett 2006, 16, 1282.
[6] (a) Schmidt, E. W.; Nelson, J. T.; Fillmore, J. P. Tetrahedron Lett 2004, 45, 3921; (b) Jin, W.; Williams, R. M. Tetrahedron Lett 2003, 44, 4635; (c) Paolis, M. D.; Chen, X. C.; Zhu, J. P. Synlett 2004, 4, 729.
[7] (a) Arnold, Z. S. Polish J Chem 1985, 59, 837; (b) Jow, C. K. Ph.D. Dissertation, W. M. Rice University, Texas, 1995.
[8] (a) Kwon, S.; Myers, A. G. J Am Chem Soc 2005, 127, 16796; (b) Chen, J.; Chen, X.; Zhu, J. J Am Chem Soc 2006, 128, 87.

